ENGINEERS AUSTRALIA

ACCREDITATION BOARD

ACCREDITATION MANAGEMENT SYSTEM
FOR
ENGINEERING EDUCATION PROGRAMS
(CURRICULUM BASED)
IN THE OCCUPATIONAL CATEGORY OF ENGINEERING ASSOCIATE

Document No. S01EA_Curr
Title Overview

DOCUMENT STATUS

<table>
<thead>
<tr>
<th>Revision</th>
<th>Prepared by</th>
<th>Authorised by</th>
<th>Issue Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Associate Director – Accreditation. Professor Alan Bradley.</td>
<td>Chair of the Accreditation Board. Professor Robin King.</td>
<td>1 February, 2011</td>
</tr>
</tbody>
</table>
Table of Contents

1. **ENGINEERING ASSOCIATE – PRACTICE CONTEXT** ... 3

2. **ACCREDITATION SYSTEM – PURPOSE AND EVOLUTION** 4
 2.1. System Evolution ... 5
 2.2. Governing Body ... 6
 2.3. Development of Accreditation Criteria ... 6

3. **THE BASIS OF ACCREDITATION** ... 6
 3.1. Building an Outcomes Based Approach to Accreditation and Educational Design ... 7
 3.2. Evaluating Innovative Programs ... 8
 3.3. Promoting Best Practice ... 8
 3.4. Communicating Views .. 8
 3.5. Essential Elements of the Accreditation Process 9
 3.6. Accreditation Criteria .. 9
 3.7. Standards of Technical Competence .. 9

4. **THE ACCREDITATION CYCLE** ... 10
 4.1. The General Review Process ... 10
 4.2. Introducing New Programs ... 11
 4.3. Changes to Existing Programs ... 12
 4.4. Alternative Implementation Pathways ... 12
 4.5. Discontinuation of Programs ... 13
 4.6. Publication of Accreditation Status and Term 14
 4.7. Publication of Accreditation Outcomes .. 14

5. **REFERENCES** ... 14
1. ENGINEERING ASSOCIATE – PRACTICE CONTEXT

The National Generic Competency Standard (Reference 3), published by Engineers Australia, defines the context for engineering practice in the occupational category of Engineering Associate as follows.

“Engineering Associates focus mainly on practical applications. They may be expert in installing, testing and monitoring equipment and systems, in the operation and maintenance of advanced plant, and in managing or supervising tradespeople in these activities. They may be expert in selecting equipment and components to meet given specifications, and in assembling these to form systems customised to particular projects.

Engineering Associates are often required to be closely familiar with Standards and Codes of Practice, and to become expert in their interpretation and application to a wide variety of situations. Many develop very extensive experience of practical installations, and will be more knowledgeable than a professional engineer or technologist on detailed aspects that can contribute very greatly to safety, cost or effectiveness in operation.

In other instances, Associates may develop high levels of expertise in aspects of design and development processes. These might include, for example, the use of advanced software to perform detailed design of structures, mechanical components and systems, manufacturing or process plant, electrical and electronic equipment, information and communications systems, and so on. Other examples might be in the construction of experimental or prototype equipment. Again, experienced operators in these areas often develop detailed practical knowledge and experience complementing the broader or more theoretical knowledge of others.

Associates need a good grounding in engineering science and the principles underlying their field of expertise, to ensure that their knowledge and skills are portable across different applications and situations. Equipment-specific or context-specific training in a particular job are not sufficient to guarantee generic competency. Given a good knowledge base, however, Associates may build further on this through high levels of training in particular contexts and in relation to particular equipment. Aircraft maintenance is an excellent example.

The competencies of Engineering Associates equip them to certify the quality of engineering work and the condition of equipment and systems in defined circumstances, laid down in recognised standards and codes of practice. Such certification should be fully acceptable in the public domain and should not require further endorsement by other practitioners perceived to be more highly qualified.

Engineering Associates may lead or manage teams appropriate to these activities. Some may establish their own companies or may move into senior management roles in engineering and related enterprises, employing professional engineers and other specialists where appropriate.”

Stage 1 Competency

“Engineering Associate qualifications often have titles that embrace a broad field of engineering, such as Civil, Electrical or Mechanical Engineering. They may equally well relate to a particular area of application such as aircraft maintenance, soil testing, marine propulsion, or computer networking.
Engineering Associates should have a capability that goes beyond a particular industry training regime, and a generalised knowledge base that allows them to locate their knowledge in the widest possible context and take professional responsibility for their work as fully-qualified members of the engineering team.

Stage 1 competency represents the level of preparation necessary and adequate for entry to practice. A newly-qualified Engineering Associate would be expected to work initially under the supervision and guidance of more experienced Associates or Engineers, while experience is gained. Graduate Associates are encouraged to undertake Professional Development Programs approved by Engineers Australia while developing the practice competencies that will qualify them for Stage 2 assessment and the status of Chartered Engineering Associate.

Stage 1 competency corresponds to completion of a 2-year Associate Degree of Engineering or Advanced Diploma of Engineering (both AQF Level 6) incorporating a program of subjects or units approved by Engineers Australia. However, some Engineering Associates will have followed other pathways, for example, successive phases of in-service training early in their career, with later consolidation and broadening of their knowledge to strengthen its theoretical base.

It is not expected that candidates will have demonstrated every detail of the knowledge, competencies and attributes that follow; but they must demonstrate at least the substance of each element. Assessment will be made in a holistic way.

2. ACCREDITATION SYSTEM – PURPOSE AND EVOLUTION

One of the objects and purposes of The Institution of Engineers, Australia (Engineers Australia), defined by Royal Charter, is “To increase the confidence of the community in the employment of engineers by admitting to The Institution only those persons as shall have satisfied the Council of The Institution that they have an adequate knowledge of both the theory and the practice of engineering”.

In accordance with this purpose, Engineers Australia evaluates complete courses or programs (hereafter referred to as programs) leading to the award of engineering tertiary qualifications under the Australian Qualification Framework (AQF) by Australian educational institutions. The key objective of this evaluation task is to accredit those programs which are adjudged as preparing their graduates adequately for entry to the profession and admission to membership of Engineers Australia in the grade of Graduate – career category – Professional Engineer, Engineering Technologist or Engineering Associate as appropriate.

This documented accreditation system is concerned with the criteria and processes for evaluating engineering education programs for professional practice leading to the award of Engineering Associate degrees (or equivalent qualifications) appropriate for entry to the profession in the career category of Engineering Associate.

In summary, accreditation provides:

- the identification of engineering education programs, producing graduates that are deemed to have attained the competencies defined for Stage 1 of the Standards, in the appropriate career category, without further assessment;

© Copyright Engineers Australia
• one of the two prerequisites for chartered status and/or registration, and consequently is a critical component of certification to governments and licensing bodies, and thence to the public, in relation to competence and safety;
• public identification of programs that have been evaluated by the relevant professional body, independently of the offering organisation, and have met the stated criteria;
• a guarantee of standing that engineering educators can offer to prospective students and graduates, Australian and international;
• a basis for international comparability, reciprocal recognition, and graduate mobility;
• a statement to governments and universities of the basic requirements of engineering education, and the level of resources reasonably required to meet these requirements;
• consultative feedback on the design of new programs, modes of delivery, and engineering schools, and assistance in the promotion of innovation and good educational practice.

Accreditation applies only to programs which deliver graduates deemed to be fit for commencement of practice in the appropriate occupational category. Accreditation cannot be sought for programs which are aimed at the continuing professional development of engineering practitioners who have previously satisfied stage 1 competence.

2.1. System Evolution

Engineers Australia has accredited professional engineering programs for many years, under well-established procedures.

Accreditation Management Systems already exist for program accreditation in the occupational categories of Professional Engineer and Engineering Technologist. The publication of this definitive documentation for curriculum based engineering education programs in the Engineering Associate category along with a complementary Accreditation Management System for competency based training programs are significant further steps forward in the evolution of the Engineers Australia accreditation processes, thus covering education programs in all occupational categories of the engineering team.

Accreditation of engineering education and training programs (both curriculum and competency based) has been undertaken by Engineers Australia since 2006, based on draft version of these accreditation management system documents.

Engineers Australia is not currently a signatory to the Dublin Accord, (Reference 6), first signed in 2002, but will submit this finalized Accreditation Management System as part of its bid for provisional admission to this educational accord under the International Engineering Alliance. The signatories to the Accord through exchange of information, periodic review and mutual observation ensure that the policies, processes and practices for granting accreditation to engineering education programs are comparable. This agreement means that engineering education programs accredited by signatories to the Accord are considered to be substantially equivalent in terms of satisfying the academic requirements for the practice of engineering at the Associate level. A listing of programs accredited by signatories to the Accord is thus a useful resource to bodies responsible for the registration or licensing of engineers in signatory countries or territories, thus assisting the international mobility of professional engineers.
The development of the accreditation criteria and guidelines within this Accreditation Management System for Engineering Associate curriculum based programs has followed the essential format of the equivalent document set for programs in the occupational category of Engineering Technologist. The criteria and guidelines also reference the Australian Qualifications Framework (AQF) for an AQF level 6 programs.

2.2. Governing Body

Implementation of the Policy on Accreditation is the responsibility of the Engineers Australia Accreditation Board. The terms of reference for the Board are detailed in Reference 6.

2.3. Development of Accreditation Criteria

The foundation criteria for accreditation used in the Accreditation Management Systems for Professional Engineer, Engineering Technologist and Engineering Associate programs remain largely unchanged from those first introduced in 1999 and are based on the Engineers Australia Policy on Accreditation, established in 1997, (Reference 1). This Policy specified the generic graduate attributes as broad outcome targets for graduates emerging from engineering education programs at the professional engineer level.

In 2004, Engineers Australia first published its separate Stage 1 competency standards for the occupational categories of Professional Engineer, Engineering Technologist and Engineering Associate. These standards are built on the earlier generic attributes and provide detailed generic capability indicators.

The accreditation criteria, (Reference 2), specify key elements of the delivery environment, the specific program structure and content and the underpinning quality systems that need to be assessed in order to judge the potential for graduates to be equipped with the capabilities specified in the appropriate competency standard. The accreditation processes developed in the system documents are built on the notion of an outcomes driven approach to learning and assessment design, performance evaluation and continuous quality improvement on the part of the education provider.

The accreditation criteria provide a consistent theme which will underpin the development of documented accreditation submission from the provider and the systematic assessment and reporting undertaken by the evaluation panel.

3. THE BASIS OF ACCREDITATION

An engineering education program is defined as a sequence of study within a specific discipline or field of specialisation, with uniquely defined educational outcomes. An overall program definition may incorporate multiple delivery options, with each delivery option representing a separate implementation pathway. Accreditation must embrace all declared delivery options for a particular program.

Graduates of a particular program will be eligible for a specific degree or diploma award with an appropriately designated title.
Engineers Australia considers engineering programs for accreditation at the request of the educational institution offering a particular program or range of programs. Accreditation is not obligatory.

Accreditation is accorded to engineering education programs, not to degree or diploma award titles, nor to organisational entities such as faculties or schools. Individual academic programs are considered for accreditation at one of three levels - Professional Engineer, Engineering Technologist or Engineering Associate, in accordance with the defined educational outcomes and targeted career destinations for graduates.

Programs are not ranked or merit-graded: they are either accredited, or not.

Accreditation of engineering education programs offered by Australian engineering education providers is governed solely by the Engineers Australia Policy on Accreditation of Professional Engineering Programs, (Reference 1).

3.1. Building an Outcomes Based Approach to Accreditation and Educational Design

The Engineers Australia Policy on Accreditation of Engineering Associate Programs, (Reference 1), requires graduates from an accredited program in any engineering discipline to be characterised by ten generic attributes. These attributes cover personal and professional capabilities; the need for in-depth technical competence, problem-solving capabilities, and a systems based approach to design and the ability to apply fundamental knowledge. The generic attributes statement provides a common platform for an outcomes based approach to educational design for all engineering programs. Graduates must be technically competent across a broad field of engineering practice (ie a designated engineering discipline) and be equipped with high level skills and knowledge in one or more specialist areas within the nominated field of practice.

More recently, Engineers Australia has published the National Generic Competency Standards - Stage 1 Competency Standard for Engineering Associate (Reference 3). This standard expands on the generic attributes platform to develop a full generic statement of competencies defining the level of preparation necessary and adequate for entry to engineering practice.

In establishing or reviewing an engineering education program in a particular engineering field, a key resource will be a detailed specification of educational outcomes set for the program. Such a specification would include broad program objectives and a detailed range of capabilities targeted for graduates. Graduate capabilities would be expected to cover enabling skills and knowledge, depth and breadth of technical competence, engineering application skills as well as personal and professional capabilities. The Stage 1 Competency Standard provides a useful generic template for such an outcomes specification to which would need to be added technical outcomes appropriate to the designated field of practice and/or specialisation(s).

Targeted graduate capabilities ideally need to be coupled with performance indicators which aggregate to demonstrate an appropriate level of attainment of the Stage 1 competencies. Such an outcomes based approach to educational design is discussed in further detail in Reference 4.

A specification of declared educational outcomes provides the starting point for the
accreditation process and also a foundation for the educational design and review tasks.

3.2. Evaluating Innovative Programs

It is a challenge for an accreditation process to act so as to promote innovation and experimentation in educational design, and at the same time maintain standards that can be objectively certified, publicly and internationally. There is no simple answer to this. Innovation by its nature challenges existing wisdom, but not every program that departs from existing norms can be said to be innovative or good.

The Engineers Australia accreditation system encourages innovation by minimising the degree of prescription in how the required program outcomes are to be attained. Program evaluation will always focus on the intent of the criteria and on the demonstrated capability of graduates to enter engineering practice. Clearly however, a program which departs radically from the methods normally found necessary – for example, by employing only a fraction of the normal complement of staff – may expect a searching examination of method as well as outcomes. The Board and its evaluation panels are required both to be receptive to new approaches, and to use the best judgement available to evaluate their substance and merit.

Continuing innovation and development can be expected to lead to a restatement of the accreditation criteria and even the Policy from time to time. These are not expected to be frequent occurrences.

3.3. Promoting Best Practice

Accreditation acts in a general way to promote best practice and encourages the dissemination of innovative education/training approaches within the Australian engineering education community.

Accreditation reports are confidential between Engineers Australia and the educational provider. It is not appropriate for Engineers Australia to publish these, nor even to publish a selection with the permission of the provider, as this might imply a form of ranking.

Engineers Australia strongly encourages engineering schools to share educational innovations and developments in good practice by all available means, including dissemination via the Australian Council of Engineering Deans (ACED) and by publication, for example through The Australian Association for Engineering Education (AAEE) publications and conferences. It is appreciated that providers find themselves in serious competition, but shared development is in the interests of engineering education and engineering practice in Australia generally.

Following a decision by Engineers Australia to accredit a program, the educational provider may be asked to give permission for examples of innovation or good practice to be communicated to ACED or AAEE for promulgation. An educational institution may be encouraged by Engineers Australia to publish details of exemplar practices for the benefit of the engineering education community.

3.4. Communicating Views

The Accreditation Policy requires engineering schools to maintain their own industry advisory mechanisms including consultations with key stakeholders and
learners to provide advice and direction. In addition, Engineers Australia may wish from time to time to provide a viewpoint to engineering schools: for example a perceived need for new programs in certain fields, or a suggested change in direction or emphasis. Similarly, it may wish to consult with providers in forming views to put to Government or another third party.

The Board may conduct such communications directly with schools, or through ACED or AAEE.

3.5. **Essential Elements of the Accreditation Process**

Assessment of graduate outcomes is important in the quality cycle for any particular program. It is also an important consideration in accreditation but cannot by any means be the sole determinant. A judgement on the appropriateness and standard of attainment of outcomes must also take into account inputs, process and content.

For any particular program the accreditation process begins with consideration of the declared educational outcomes specification with special emphasis on the targeted graduate capabilities and any associated performance indicators. Evidence of the attainment of outcomes will be partially through an aggregation of assessment and feedback data gathered by the education provider. Further evidence that graduates will be potentially equipped with the full range of Stage 1 competencies will arise from the provider’s approach to educational design and review; the program structure, curriculum content and delivery modes; the approach to assessment; the quality assurance systems and the overall operating environment.

The accreditation process does not prescribe detailed program content or educational method, but invites innovation and diversity. It requires engineering education providers to have in place their own mechanisms for researching and systematically reviewing program objectives and targeted graduate capabilities, for educational design and performance assessment and for continuous quality improvement. The focus of accreditation is on the essential graduate outcomes and the evidence of their attainment.

3.6. **Accreditation Criteria**

The formal accreditation criteria are derived directly from the Policy and are developed under three main headings:

- the operating environment,
- the academic program, and
- the quality systems.

The detailed accreditation criteria and associated performance indicators are clearly identified in summary form, (Reference 2).

3.7. **Standards of Technical Competence**

A frequent misconception of the evolving accreditation system is that the emphasis is shifting away from building a high standard of technical competence to the development of a broad range of ‘softer’ skills in engineering graduates. The generic attributes statement within the Policy in fact contradicts this interpretation by demanding that graduates be equipped with appropriate foundation knowledge and skills in engineering and science, complex problem solving and design capabilities as well as in-depth technical competence. This emphasis is further elaborated in the Stage 1 Competency Standard.
A primary responsibility of the engineering education provider is to set a detailed and measurable specification of targeted graduate capabilities, appropriate to the designated domain of practice and associated area(s) of specialisation. These targets need to be determined in consultation with external constituencies and with reference to national and international engineering education practices. The outcomes specification needs to include an objective definition of the knowledge base and technical skills, the engineering application skills and the professional and personal capabilities expected for a graduate of the program. A key function of the accreditation task is to make judgement on the appropriateness and level of attainment of these targeted outcomes.

The development of professional and personal skills is also fundamental to the Stage 1 Competency Standards and needs to be inter-woven with the development of technical competence, enabling skills, problem solving and design capabilities as a holistic and unified educational experience.

The emphasis should be on systematic educational design and a balanced curriculum, which delivers a demonstrated depth of technical competence, focussed within selected specialist areas of the designated practice domain. Through a proven life long learning ability there will be capacity for a graduate to add breadth and depth to this technical competence on an ‘as-required’ basis.

4. THE ACCREDITATION CYCLE

So far as possible, accreditation is scheduled so that all programs offered by a particular education institution or engineering school are reviewed concurrently at intervals of five years. This is referred to as a general review of programs offered by the particular provider. Established programs which meet all criteria are normally accredited or re-accredited for the five year period.

Accreditation is normally accorded on a full calendar year basis. Should Engineers Australia be unable to schedule procedures to re-accredit within a five-year period, or should a school be unable to meet a schedule through genuine misadventure, existing accreditation will normally be extended for one further calendar year. Where a program is scheduled for closure, accreditation can normally be extended from year to year for a limited time.

4.1. The General Review Process

The engineering education provider will normally submit a request to Engineers Australia for a program or programs to be accredited. Engineers Australia will issue a timely reminder where a general review of programs is due.

Engineers Australia will acknowledge the accreditation request by issuing a date for submission of initial documentation and a targeted visit date. Guidelines for preparing the initial documentation are detailed in Reference 5.

An independent evaluation panel comprising senior academic and industry practitioners undertakes the evaluation of programs. The Accreditation Board formally approves the composition of evaluation panels. The accreditation process involves a formally documented submission from the institution concerned, and normally a panel visit to the campus. The submission documentation provides a fundamental self-review against the accreditation criteria, (Reference 2).
A panel tele-conference is held some 4-5 weeks prior to the visit to discuss initial findings. A tele-conference report is prepared for the educational institution to advise of any initial concerns the panel may have and any additional data or information that is required. Following the campus visit, a formal report from the panel provides recommendations on accreditation to the Accreditation Board. The Board approves a draft version of the report for release and invited comment from the educational institution before finalising its decision on accreditation.

A panel bases its findings and recommendations on both the submission documentation and the visit. The structure of the visit report is outlined in Reference 7. The education provider has the opportunity to comment on a draft form of the visit report prior to finalisation by the Accreditation Board.

Full details of the general review process are provided in Reference 7. Possible terms and conditions on accreditation, limitations on publication of outcomes, confidentiality issues, avenues of appeal, mechanisms for investigating concerns and potential conflicts of interest are all covered in Reference 7.

4.2. Introducing New Programs

Education providers are required to advise Engineers Australia of the intention to introduce a new program. This will normally be undertaken at the time internal institutional approval has been obtained for the program’s introduction and must be provided prior to commencement of the first cohort of students.

Given the strong focus on graduate outcomes, a new program cannot be given full accreditation until after the emergence of the first group of graduates. To provide the school and its students with reasonable reassurance, provisional accreditation may be accorded on the basis of compliance with the criteria to the extent then possible. A new program is considered for full accreditation when it reaches completion (i.e. graduation of its first sizeable intake of students).

Consideration of provisional accreditation should normally be undertaken during the first year of operation of a new program. Provisional accreditation will often require a campus visit. Documentation requirements and details of processes for the accreditation of new programs are provided in Reference 8. It is important to seek full accreditation for a program as soon as practicable once the first substantive cohort of graduates begins to emerge.

Provisional accreditation does not provide the qualification recognition required for membership of Engineers Australia, nor does it satisfy the base qualification requirements for registration on the National Engineering Associates Register. Likewise, provisional accreditation of a program does not provide qualification recognition under the Dublin Accord. Full accreditation must be achieved for graduates to be deemed to have qualified from an ‘accredited program’ and thus satisfy each of these recognition requirements.

Key considerations for the transition to full accreditation will be the school’s documented response to recommendations made in the report of the provisional accreditation evaluation panel and the quality of assessed student work in the latter study years of the program.

A visit will normally be necessary to assess transition to full accreditation. Assessment could be undertaken as early as during the final semester of study of the first graduating cohort, provided there is sufficient access to representative examples of
assessed final year student work, and also to a representative group of graduating students.

At the very latest, full accreditation should be sought at the next scheduled general review following the emergence of graduates.

Where evidence of compliance with the criteria is clear, full accreditation will be accorded from the start date that applied for provisional accreditation, thus assuring the recognition of all graduates for Engineers Australia membership.

4.3. Changes to Existing Programs

The terms of accreditation will provide for on-going development of structure and content and the expectation of continuing improvement. It would normally be expected that such amendments be within the framework of the educational outcomes specification, (program objectives and targeted graduate capabilities), approved as part of the accreditation process.

Where major amendments are being proposed, including changes to the program title or formal program objectives and/or graduate capability targets, then Engineers Australia must be notified in writing of such changes prior to the implementation of the change.

Under such major changes the Accreditation Board will take the decision on whether to maintain continuing full accreditation or whether to consider the revised program for provisional accreditation. In any case full accreditation will need to be re-affirmed once the first cohort of students has graduated from the revised program. Further details on the consideration of program changes are provided in Reference 8.

4.4. Alternative Implementation Pathways

Engineers Australia encourages innovative approaches to program design leading to flexible options for students and the provision of new engineering education products.

Flexible delivery options will commonly be manifested as alternative implementation pathways within a single program definition. In this case each pathway will normally be designed to meet the same objectives and deliver the same educational outcomes, and neither the title of the program nor that of the associated award would normally be differentiated on the basis of the particular implementation pathway followed.

Alternative implementation pathways may for example occur through optional major or minor study sequences, elective academic units, workplace learning options, defined articulation routes, student exchange channels, external or distance study modes or through project/thesis options. A further example is where a program is implemented alternatively through a regional or offshore campus.

A fundamental requirement is that the same educational outcomes are delivered through all implementation pathways. For a program to maintain ongoing accreditation all implementation pathways must be individually evaluated and each pathway must meet the accreditation criteria concurrently. The accreditation processes for the alternative pathways are thus coupled. A program implementation cannot be accredited at any one location unless it is accredited for implementation
at all locations.

Accreditation of alternative implementation pathways is discussed in more detail in Reference 9.

4.4.1. Offshore, Regional Campus and Distance Based Implementation

Offshore, regional campus and distance based program offerings may well be alternative implementations of a host program already established on an educational provider’s home campus and are thus undifferentiated in title, award and specified outcomes. Alternatively such offerings may be quite separate to programs offered on the home campus and are thus fully differentiated.

Home campus and remote or offshore campus accreditation visits would not normally be carried out at the same time for logistical reasons. This means that reviews of alternative implementations of a particular program on separate campuses would not be synchronised, although the implementations are claimed to be undifferentiated in terms of educational outcomes. Although each campus will thus have a separate general review cycle, accreditation of a particular implementation of a program at one location will link with and reaffirm the on-going accreditation of all other implementations of the program at that time. Such reaffirmation will of course be limited to the accreditation term associated with the individual review cycle set for each campus.

The rules and procedures of the Dublin Accord now recognise the accreditation of programs that are offered in differentiated or undifferentiated form by a provider, headquatered in the jurisdiction of a signatory, but delivered at a location outside of the national or territorial boundaries of that signatory. In the case of an Australian engineering school implementing an undifferentiated program at a location within the jurisdiction of another signatory to the Accord, accreditation of the offshore offering would be initiated by Engineers Australia, but undertaken collaboratively with the signatory associated with the country of delivery. In cases the offshore program implementation must satisfy the accreditation criteria of both signatories.

Reference 9 provides more detailed guidelines for the accreditation of offshore, remote campus and distance based offerings.

4.4.2. Articulation on the Basis of Advanced Standing

Reference 9 also provides guidelines for the accreditation of articulation pathways. Where agreed academic credit for a particular articulation route exceeds the equivalent of 50% of the study program, the designated prior learning program will need to be separately and formally evaluated as part of an integrated accreditation process.

4.5. Discontinuation of Programs

Engineers Australia must be notified of any intention to discontinue an accredited program or individual implementation of a program, together with arrangements for providing ongoing teaching to currently enrolled students. A terminating year will be determined to conclude the accreditation term. This will normally correspond with the last year of intake of students to the program, thus covering the recognition of this final enrolled cohort.

© Copyright Engineers Australia
4.6. Publication of Accreditation Status and Term

Engineers Australia publishes a listing of accredited programs with accreditation normally accorded on a full calendar year basis. Each program is assigned a designated term of accreditation with a defined start date. The start date will normally correspond with the year in which provisional accreditation was first confirmed by the Accreditation Board. The term of accreditation will normally range from the published start date to the first intake of students for the year following the scheduled year of the next general review. This extension is provided as a safeguard against possible processing delays in concluding the general review cycle. For discontinued programs, Engineers Australia will publish a terminating year for accreditation of the program.

Where a student is continually enrolled in a fully accredited engineering education program, and where such enrolment overlaps at least partially with the published term of accreditation, once qualifying for the associated award, the student will be deemed to have graduated from an accredited program.

4.7. Publication of Accreditation Outcomes

Educational institutions may wish to publish statements to the effect that certain of their programs are accredited by Engineers Australia. An institution is responsible for ensuring the accuracy of such statements, and in particular, must avoid statements which might be read as implying that certain programs are accredited where this is not the case.

Accreditation visit reports are confidential between Engineers Australia and the educational institution concerned, and should not be published. If a report is required to be disclosed for any reason, then it should be reproduced in full and both Engineers Australia and the institution concerned should be notified. Excerpts taken out of context are specifically not authorised.

5. REFERENCES

1. P02EA_Curr: Engineers Australia Policy on Accreditation of Professional Engineering Programs
2. S02EA_Curr: Accreditation Criteria Summary
3. P05EA_Curr: Engineers Australia National Generic Competency Standards - Stage 1 Competency Standard for Engineering Associate
4. G02EA_Curr: Accreditation Criteria Guidelines
5. G06EA_Curr: Preparation of Submission Documentation
7. G03EA_Curr: General Review Process
8 G04EA_Curr Introducing New Programs and Program Amendments

9 G05EA_Curr Alternative Implementation Pathways