Due to its inherent strength and durability, masonry is an architectural and/or structural material which has the potential to perform effectively for an indefinite period (numerous examples of masonry structures around the world attest to this performance). However, for this to occur, masonry must be designed, detailed and constructed to have the appropriate serviceability and strength performance to allow for short and long term actions, including possible extreme loads from wind or earthquake. In this regard, valuable lessons can be learnt from past examples of good and bad performance.

This presentation will describe the various aspects which must be considered in the design, construction and detailing of masonry to ensure adequate serviceability and strength performance. In this context, lessons learnt from the 1989 Newcastle Earthquake and other past events will be described.

ABOUT THE SPEAKER

Adrian Page is an Emeritus Professor in the School of Engineering at the University of Newcastle. He has been actively involved in fundamental and applied masonry research for many years and has been internationally recognized for his work.

Some of this research has related to the development of design provisions for the Masonry Structures Code AS3700 which he currently chairs. Adrian has close links with the masonry industry and was awarded the Brick Industry Medal in 2006 for his contributions to that industry. His Chair at Newcastle has also been supported by “Think Brick Australia” (formally the Clay Brick and Paver Institute) since 1992.

Adrian is a Fellow of the Academy of Technological Sciences and Engineering, an Honorary Fellow of Engineers Australia and a past recipient of the Engineers Australia Warren and Chapman Medals.