Improving the resilience of buildings to severe wind events

Cyclone Testing Station is not funded by JCU:
We get income via donations, research grants, risk assessments and product testing services.

Contact: David Henderson
Director, CTS
07 4781 4340
david.henderson@jcu.edu.au

Wind loads on low rise buildings
If an opening forms in the external envelope of the building e.g. a window is broken or a door blows in...

Housing design standard AS4055 requires that a dominant opening is assumed in the design. (for cyclonic regions, C and D, only)
National Construction Code of Australia: Structural objectives

- Safeguard people from injury caused by structural failure,
- Safeguard people from loss of amenity caused by structural behaviour,
- Protect other property from physical damage caused by structural failure, and
- Safeguard people from injury that may be caused by failure of, or impact with, glazing.

AS/NZS1170.2 Wind load standard

- 70 m/s (250 km/h)
- 87 m/s (300 km/h)
- 57 m/s

BCA: Class 2 Importance level

1:500 Annual probability of exceedance

45 m/s
Tropical Cyclone Categories
(Not the same as the Saffir-Simpson scale used in North America)

<table>
<thead>
<tr>
<th>Cyclone Category</th>
<th>Gust Wind Speed (10 m height in open terrain)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>< 125 km/h < 35 m/s</td>
</tr>
<tr>
<td>2</td>
<td>125 – 170 km/h 35 - 47 m/s</td>
</tr>
<tr>
<td>3</td>
<td>170 – 225 km/h 47 - 63 m/s</td>
</tr>
<tr>
<td>4</td>
<td>225 – 280 km/h 63 - 78 m/s</td>
</tr>
<tr>
<td>5</td>
<td>> 280 km/h > 78 m/s</td>
</tr>
</tbody>
</table>

What is the wind speed?

- approach terrain category
- shielding
- topography
- height of building
- orientation of building

Local Wind Field Parameters

- on hills: increasing
- in the suburbs: decreasing
- near the coast: decreasing
- over the ocean: increasing
Why failures?

- Are our design standards appropriate?
- Was the design criteria (wind speed) exceeded?
- Correct implementation of design criteria?
- Appropriate materials?
- Adequate construction quality?
Estimated wind speeds

- Max gust speed estimated at 245 km/h
- (Design wind speed houses 250 km/h)
- Max gust ~90% design speed
 Cardwell, Tully Heads, South Mission Beach
- Max gust ~80% design speed
 Tully, Kurrimine Beach

Communities in these areas subjected to Cat 3 to Cat 4 wind speeds (mainland)

Post-80s housing (current construction)
Pre-80s houses

Structural Damage Data

Post 80s (current construction)
- <3% major roof damage
- ~30% all roller doors damaged
- But many houses had water ingress

Pre 80s (older housing)
- >12% major roof damage
- ~2% damaged by large debris
- May have hidden damage

Lower levels of damage of “newer” housing similar pattern in other surveys (e.g. Cyclone Winifred Cyclone Vance, Cyclone Larry)

Lessons have been learnt since Cyclone Tracy!
Townsville Region (55% V_{des})

Loss Ratio
- 0-10%
- 10-50%
- 50-100%
- >100%

→ Low damage levels BUT high frequency
→ Minor damages independent of age
→ Moderate/severe damages ‘older’ areas

Low claim ratio <0.1 Townsville region
Reduce drivers of loss (and improve resilience of community)

Four mitigation options:

1. For older houses - Upgrading of roof structure (with focus on work occurring during typical renovations) (Examples in HB132.2 and on QBCC web site)
2. Opening protection (i.e. windows, doors, etc.) (applies to all house types and ages for helping to reduce water ingress)
3. Community education/preparedness/maintenance (applies to all house types and ages)
4. On-going builder/trades/engineering/manufacturer education for updates to codes and standards and practices
Cyclone Marcia
Damage investigation of buildings in Yeppoon and Rockhampton

BoM Operational Track Map
Estimating surface winds

![Graph showing wind speed and direction for Yeppoon with a peak of 155 km/h.](graph1)

Yeppoon

- **155 km/h**

This is 75% of design wind speed and only 50% of design pressure.

Therefore No Damage!?!?

![Graph showing wind speed and direction for Rockhampton with a peak of 115 km/h.](graph2)
Queensland Building and Construction Commission inspections of housing

• In discussions with QBCC they consider that the cladding is a part of the structural system and that a “simple” re-roof does require certification which covers inclusion of appropriate batten to rafter connections and strapping of rafters to internal walls and top plates.
• They agree however that this is not a common outcome of a “re-roof”.

Queensland Building and Construction Commission

• "a number of homes" in Yeppoon and Rockhampton where roof replacements didn't meet cyclone standards

• contractors responsible for “dodgy roof installations”

Brisbane Times 4 March 2015
Improving future for Pre-80s housing

- General information on upgrading structural performance in existing houses can be found in Standards Australia **Handbook HB 132.2** (and for repair **Timber Qld/QBCC**)
- Tie-downs up to date
 - Whenever roof is off – look deeper
- Roof space inspections should be undertaken to look for partial or hidden failures of connections within the roof.
Retirement village
• 57 total units,
• 43 metal (no observed wind damage),
• 14 tile (12 damaged)
• Tile damage was hip/ridge leading to water ingress issues

TC Yasi - Progress on Recommendations: Codes and Standards
• Roof tile damage overrepresented compared with metal cladding
• AS 2050 Installation of roof tiles
 – Mechanical fixing requirements for ridge, hip and part tiles in cyclonic house classifications C2 and above (No change for C1?)
 – No longer allow flexible pointing as a fixing method
 – What about demonstrating compliance for cyclonic wind loading?
 – Performance of roof tile clips?
Wind driven debris

- Small
 - Tiles
- Medium
 - Battens
 - Sheets
- Large
 - Roofs
 - Sheds
 - Big consequences

Wind driven debris test

Australian Standard Test (AS/NZS1170.2):
4 kg 100 x 50 mm timber travelling at > 28 m/s (100 km/h) (Region C house)
When selecting debris screens for window protection or cladding systems, make sure that the testing included at least impacts at centre span AND near an edge!!!
Windows and doors

- Doors and windows are part of the building envelope
- MUST be able to resist wind loads

Roller Doors

Required:
- Wind ratings for doors exist (Specification /certification)
- All forces on supports to be resisted including wind lock tensions
Roller Doors

Wind locks engage into tracks
Inwards (or outwards) deflection results in large in-plane forces in door skin
Large in-plane forces imposed upon the mullions and structure.

(Plan view) Wind Load

Restraining Forces at Tracks

Large In-Plane Force

Door slats flex during wind load

Appendix E of AS/NZS 4505 details methods for determining restraining forces for structure

Wind driven rain (WDR) ingress

In every cyclone or thunderstorm damage investigation report conducted by the CTS back to Cyclone Winifred mentions damage due to water ingress

- Extensive damage to Plasterboard linings
- Corrosion of framing elements
- Non structural elements
- Mold and bacteria
- Odour

(slide from TC Larry CTS report)
Cyclone Olwyn
Exmouth gust wind speeds estimated at 180 to 190 km/h

WDR Water ingress

<table>
<thead>
<tr>
<th>Water Ingress</th>
<th>No mention of Water Ingress</th>
<th>Water Ingress</th>
</tr>
</thead>
<tbody>
<tr>
<td>With Defective Roof</td>
<td>10%</td>
<td>80%</td>
</tr>
<tr>
<td>Without Roof Damage</td>
<td>20%</td>
<td>90%</td>
</tr>
<tr>
<td>With Roof Damage</td>
<td>30%</td>
<td>100%</td>
</tr>
<tr>
<td>Without Opening Dam</td>
<td>40%</td>
<td>100%</td>
</tr>
<tr>
<td>With Opening Dam</td>
<td>50%</td>
<td>100%</td>
</tr>
<tr>
<td>Total mentions</td>
<td>60%</td>
<td>100%</td>
</tr>
</tbody>
</table>
Damage to modern engineered construction?
Internal damage from pressurised ceiling space

Roof top damage
A/C Ducting lost

Recovered a/c duct
Debris from modern buildings

Simple steps for improvement

• Take control & engineer all exposed elements incl:
 – Fascias
 – Flashings
 – Ceilings
 – Vents
 – A/C plant...
• Redundancy (prevention of progressive collapse)
• Durability consistent with design life
• Incorporate additional reserves when elements cannot be readily inspected or maintained
Recent house construction

Structural load path - Truss tie down

Brisbane housing
Structural load path - Truss tie down

Melbourne housing

All test data and Regulations not much use if not used

Product manufacturers need to provide and promote installation guides to designers, builders and certifiers
MYTH

• Test Standards have a factor of safety to account for errors in construction
• FALSE
• Test Standards based on “Fabricated to manufacturers specifications” – i.e. “best practice”
• If there are build errors – the building is more vulnerable and not able to withstand design load

To Conclude:

• The wind finds the weakest link.
• Failure of a single element can lead to the progressive failure of the structure.
• Our houses are where we shelter – they have to be secure.
• But MUST evacuate if threat of Storm Tide
• Continued education and awareness of the building community is required